A team of researchers conducted a new series of measurements of oxygen isotopes which provided increasing evidence that the Moon formed from the collision of Earth with another large, planet-sized astronomical body, around 4.5 billion years ago.
Most planetary scientists believe that the Moon formed from an impact between Earth and a planet-sized body, which has been given the name Theia.
Efforts to confirm that the impact had taken place had centered on measuring the ratios between the isotopes of oxygen, titanium, silicon and others. These ratios are known to vary throughout the solar system, but their close similarity between Earth and Moon conflicted with theoretical models of the collision that indicated that the Moon would form mostly from Theia, and thus would be expected to be compositionally different from Earth.
Now a group of German researchers, led by Dr. Daniel Herwartz, have used more refined techniques to compare the ratios of 17O/16O in lunar samples, with those from Earth. The team initially used lunar samples which had arrived on Earth via meteorites, but as these samples had exchanged their isotopes with water from Earth, fresher samples were sought. These were provided by NASA from the Apollo 11, 12 and 16 missions; they were found to contain significantly higher levels of 17O/16O than their Earthly counterparts.
"The differences are small and difficult to detect, but they are there. This means two things; firstly we can now be reasonably sure that the Giant collision took place. Secondly, it gives us an idea of the geochemistry of Theia. Theia seems to have been similar to what we call E-type chondrites. If this is true, we can now predict the geochemical and isotopic composition of the Moon, because the present Moon is a mixture of Theia and the early Earth. The next goal is to find out how much material of Theia is in the Moon," Dr Herwartz said.
Most models estimate that the Moon it is composed of around 70% to 90% material from Theia, with the remaining 10% to 30% coming from the early Earth. However, some models argue for as little as 8% Theia in the Moon. Dr Herwartz said that the new data indicate that a 50:50 mixture seems possible, but this needs to be confirmed.
The team used an advanced sample preparation technique before measuring the samples via stable isotope ratio mass spectrometry, which showed a 12 parts per million (± 3 ppm) differences in 17O/16O ratio between Earth and Moon.
GMT 11:00 2017 Friday ,15 December
Will Trump send Americans to the Moon? Money talksGMT 09:22 2017 Sunday ,19 November
What is the Paris Agreement?GMT 08:45 2017 Sunday ,10 September
What is storm surge and why is it so dangerous?GMT 08:44 2017 Sunday ,10 September
What is storm surge and why is it so dangerous?GMT 13:42 2017 Wednesday ,09 August
Want to learn something? Sleep on it, but not too deeplyGMT 09:04 2017 Friday ,28 July
Could a green sponge hold cancer-fighting secrets?GMT 13:50 2017 Thursday ,20 July
What makes a dog man's best friend? It's in the genesGMT 07:49 2017 Tuesday ,18 April
FAQs: Everything you need to know about the UAE’s new teacher licensing systemMaintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2023 ©
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2023 ©