3d vision with ordinary digital camera
Last Updated : GMT 09:40:38
Themuslimchronicle, themuslimchronicle
Themuslimchronicle, themuslimchronicle
Last Updated : GMT 09:40:38
Themuslimchronicle, themuslimchronicle

3-D vision, with ordinary digital camera

Themuslimchronicle, themuslimchronicle

Themuslimchronicle, themuslimchronicle3-D vision, with ordinary digital camera

Digital camera to unlock new 3-D imaging capabilities
Tehran - FNA

A team of engineers discovered how to harness the image stabilization and focus modules of a modern, digital camera to unlock new 3-D imaging capabilities.

This new capability was successfully demonstrated in a proof-of-concept laboratory experiment using a small deformable mirror --a reflective surface that can direct and focus light. The research demonstrates how the equivalent technology in modern digital cameras, the image stabilization and focus modules, could be harnessed to achieve the same results without additional hardware.

The purpose of the experiment was to extract depth-of-field information from a "single shot" image -- rather than traditional 3D imaging techniques that require multiple images- without suffering any trade-offs in image quality. When integrated into commercial cameras and other optical technologies, this visualization technique could improve core functions, like image stabilization, and increase the speed of autofocus, which would enhance the quality of photographs.

"Real scenes are in three dimensions and they're normally captured by taking multiple images focused at various distances," said Patrick Llull, Duke Imaging and Spectroscopy Program (DISP), Duke University. "A variety of single-shot approaches to improve the speed and quality of 3D image capture has been proposed over the past decades. Each approach, however, suffers from permanent degradations in 2D image quality and/or hardware complexity."

The research team, led by David Brady, a professor at Duke, was able to overcome these hurdles, developing an adaptive system that may accurately extract 3D data while maintaining the ability to capture a full-resolution 2D image without a dramatic system change, such as switching out a lens.

Brady and his team present their findings in Optica, a journal from The Optical Society.

A New Path to the Third Dimension

Humans are able to see in three dimensions by a process known as parallax, in which the information received by each eye is slightly offset from the other. The brain is able to interpret and process these slightly divergent signals, recognizing how the apparent displacement as seen by each eye relates to different distances. This allows humans to perceive depth.

Traditional 3D imaging relies on virtually the same principle in which images and scenes are recorded with two slightly off-set lenses. When projected or processed, the original 3D appearance is restored. This recording process, however, requires twice the data as a 2D image, making 3D photography and video more bulky, expensive, and data intensive.

"We want to achieve the same results with the equipment people already have in their handheld cameras with no major hardware modifications," noted Llull.

Stabilization to Recover Information at Depth

Modern digital cameras, especially those with video capabilities, are frequently equipped with modules that take the jitter out of recordings. They do this by measuring the inertia or motion of the camera and compensate by rapidly moving the lens -- making multiple adjustments per second -- in the module. This same hardware can also change the image capture process, recording additional information about the scene. With proper software and processing, this additional information can unlock the otherwise hidden third dimension.

The first step, according to the researchers, is to enable the camera to record 3D information. This is achieved by programming the camera to performing three functions simultaneously: sweeping through the focus range with the sensor, collecting light over a set period of time in a process called integration, and activating the stabilization module.

As the optical stabilization is engaged, it wobbles the lens to move the image relative to a fixed point. This, in conjunction with a focal sweep of the sensor, integrates that information into a single measurement in a way that preserves image details while granting each focus position a different optical response. The images that would have otherwise been acquired at various focal settings are directly encoded into this measurement based on where they reside in the depth of field.

For the paper, the researchers used a comparatively long exposure time to compensate for the set-up of the equipment. To emulate the workings of a camera, a beam splitter was necessary to control the deformable lens: This extra step sacrifices about 75 percent of the light received. "When translated to a fully integrated camera without a beamsplitter, this light loss will not be an issue and much faster exposure times will be possible," noted Llull.

The researchers then process a single exposure taken with this camera and obtain a data-rich product known as a data cube, which is essentially a computer file that includes both the all-focused 2D image as well as an extra element known a depth map. This depth map data, in effect, describes the focus position of each pixel of the image. Since this information is already encoded into the single measurement, it's possible to construct a depth map for the entire scene.

The final step is to process the image and depth map with a commercial 3D graphics engine, similar to those that render 3D scenes in video games and computer-generated imagery used in Hollywood movies. The resulting image can be used to determine the optimal focal setting for subsequent full-resolution 2D shots, as an autofocus algorithm does, but from only one image. Additionally, synthetic refocusing may be used on the resulting 3D imagery to display the scene as viewed at different depths by a human.

Though only performed in laboratory settings with surrogate technologies, the researchers believe the techniques they employed could be applied to basic consumer products. The result would be a more efficient autofocusing process, as well as the added third dimension to traditional photography.

"We have found a new path to extract 3D information from an otherwise 2D process. The benefits of this are dual functionality of tomographic imaging and full resolution 2D capture with little modification to existing systems," concluded Llull.

themuslimchronicle
themuslimchronicle

Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

3d vision with ordinary digital camera 3d vision with ordinary digital camera

 



Themuslimchronicle, themuslimchronicle
Themuslimchronicle, themuslimchronicle
Themuslimchronicle, themuslimchronicle

GMT 09:23 2017 Wednesday ,19 April

1105 food baskets distributed in Yemen

GMT 09:35 2018 Monday ,08 January

Trump marijuana policy reversal stokes fears

GMT 11:09 2017 Saturday ,16 December

Russia poses risk to undersea cables: UK defense chief

GMT 09:56 2017 Thursday ,02 November

Digital subscriber gains rev up NY Times profit

GMT 01:38 2016 Thursday ,29 December

Iraqi President meets Kuwaiti Foreign Minister

GMT 17:37 2017 Tuesday ,21 February

Le Pen refuses to wear veil, fails to meet with Mufti

GMT 01:48 2016 Monday ,13 June

Pioneering solar pilots 'make sci-fi a reality'

GMT 18:45 2016 Wednesday ,21 December

Several Qaeda militants killed in drone strike

GMT 07:28 2018 Thursday ,11 January

As US freezes aid, Pakistan dismisses economic fears

GMT 11:14 2017 Sunday ,12 March

My video is flagrant but smashed the charts

GMT 09:21 2018 Wednesday ,10 January

unveils London boutique and appoints MG Empower

GMT 07:48 2018 Thursday ,04 January

L’Oréal Professionnel unveils Alexa
Themuslimchronicle, themuslimchronicle
Themuslimchronicle, themuslimchronicle
 
 Themuslimchronicle Facebook,themuslimchronicle facebook  Themuslimchronicle Twitter,themuslimchronicle twitter Themuslimchronicle Rss,themuslimchronicle rss  Themuslimchronicle Youtube,themuslimchronicle youtube  Themuslimchronicle Youtube,themuslimchronicle youtube

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2023 ©

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2023 ©

muslimchronicle muslimchronicle muslimchronicle muslimchronicle
themuslimchronicle themuslimchronicle themuslimchronicle
themuslimchronicle
بناية النخيل - رأس النبع _ خلف السفارة الفرنسية _بيروت - لبنان
themuslimchronicle, themuslimchronicle, themuslimchronicle